Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.

Identifieur interne : 001E32 ( Main/Exploration ); précédent : 001E31; suivant : 001E33

Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.

Auteurs : Ülo Niinemets [Estonie] ; Zhihong Sun [Estonie, République populaire de Chine] ; Eero Talts [Estonie]

Source :

RBID : pubmed:26037962

Descripteurs français

English descriptors

Abstract

Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission.

DOI: 10.1111/pce.12582
PubMed: 26037962
PubMed Central: PMC5798581


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.</title>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, 51014, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, 10130, Tallinn, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, 10130, Tallinn</wicri:regionArea>
<wicri:noRegion>Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, 51014, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Zhejiang A&F University, Hangzhou, 311300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Zhejiang A&F University, Hangzhou, 311300</wicri:regionArea>
<wicri:noRegion>311300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, 51014, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26037962</idno>
<idno type="pmid">26037962</idno>
<idno type="doi">10.1111/pce.12582</idno>
<idno type="pmc">PMC5798581</idno>
<idno type="wicri:Area/Main/Corpus">001C70</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C70</idno>
<idno type="wicri:Area/Main/Curation">001C70</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C70</idno>
<idno type="wicri:Area/Main/Exploration">001C70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.</title>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, 51014, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, 10130, Tallinn, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, 10130, Tallinn</wicri:regionArea>
<wicri:noRegion>Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, 51014, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Zhejiang A&F University, Hangzhou, 311300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Zhejiang A&F University, Hangzhou, 311300</wicri:regionArea>
<wicri:noRegion>311300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, 51014, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butadienes (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Light (MeSH)</term>
<term>Metabolic Flux Analysis (MeSH)</term>
<term>Metabolic Networks and Pathways (radiation effects)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Pentanes (MeSH)</term>
<term>Photosynthesis (radiation effects)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plastids (radiation effects)</term>
<term>Populus (physiology)</term>
<term>Populus (radiation effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse des flux métaboliques (MeSH)</term>
<term>Butadiènes (MeSH)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Environnement (MeSH)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Pentanes (MeSH)</term>
<term>Photosynthèse (effets des radiations)</term>
<term>Plastes (effets des radiations)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Voies et réseaux métaboliques (effets des radiations)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Butadienes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Plastes</term>
<term>Populus</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés organiques du phosphore</term>
<term>Hémiterpènes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Metabolic Networks and Pathways</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plastids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environment</term>
<term>Light</term>
<term>Metabolic Flux Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse des flux métaboliques</term>
<term>Butadiènes</term>
<term>Environnement</term>
<term>Lumière</term>
<term>Pentanes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26037962</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.</ArticleTitle>
<Pagination>
<MedlinePgn>2707-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.12582</ELocationID>
<Abstract>
<AbstractText>Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission. </AbstractText>
<CopyrightInformation>© 2015 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
<AffiliationInfo>
<Affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Estonian Academy of Sciences, 10130, Tallinn, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Zhihong</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Zhejiang A&F University, Hangzhou, 311300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Talts</LastName>
<ForeName>Eero</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Estonian University of Life Sciences, 51014, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>322603</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064688" MajorTopicYN="N">Metabolic Flux Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dimethylallyl diphosphate</Keyword>
<Keyword MajorTopicYN="N">isoprene synthase</Keyword>
<Keyword MajorTopicYN="N">leaf ontogeny</Keyword>
<Keyword MajorTopicYN="N">light response curves</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26037962</ArticleId>
<ArticleId IdType="doi">10.1111/pce.12582</ArticleId>
<ArticleId IdType="pmc">PMC5798581</ArticleId>
<ArticleId IdType="mid">EMS75956</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2009 Dec;21(12):4002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Nov;17(11):705-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Aug;81(4):1115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 7;288(23):16926-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 May;35(5):839-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22070625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Nov;48(11):1575-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Feb;120(2):338-346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jul 1;165(4):1488-1504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24987018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24108005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1985 Aug;165(3):397-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24241146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16052321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Sep;10(9):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Dec;103(4):1413-1420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Sep 17;402(2):363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 May;105(1):279-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1635-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jun;168(2):532-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25926480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Feb;66(3):841-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(3-4):260-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Aug 5;266(22):14802-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1860876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Apr;38(4):751-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Jan;59(1):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Oct;22(14):1011-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(4):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2012 Mar;125(2):263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21584787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May;165(1):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):2188-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23262281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):1037-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jan-Feb;16(1_2):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jan;18(1):45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Feb;205(3):973-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25318596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(4):1637-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):541-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Jan;105(1):30-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Feb;103(2):79-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20039131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):724-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Dec;97(4):1588-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Sep;91(1):352-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667024</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="Estonie">
<noRegion>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</noRegion>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26037962
   |texte=   Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26037962" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020